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We investigate the crossover regime from three-dimensional topological insulators Bi2Te3 and Bi2Se3 to
two-dimensional topological insulators with quantum spin Hall effect when the layer thickness is reduced.
Using both analytical models and first-principles calculations, we find that the crossover occurs in an oscilla-
tory fashion as a function of the layer thickness, alternating between topologically trivial and nontrivial
two-dimensional behavior.
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Introduction. Recent discovery of the two-dimensional
�2D� and three-dimensional �3D� topological insulator �TI�
state has generated great interests in this new state of topo-
logical quantum matter.1–7 In particular, Bi2Te3 and Bi2Se3
are predicted to have bulk energy gaps as large as 0.3 eV, and
gapless surface states consisting of a single Dirac cone.5

Angle-resolved-photo-emission spectroscopy on both of
these materials observed the single Dirac cone linearly dis-
persing from the � point.6,7 These materials have a layered
structure consisting of stacked quintuple layers �QL�, with
relatively weak coupling between the QLs. Therefore, it
should be relatively easy to prepare these materials in the
form of thin films, either by nanoribbon growth method,8 or
by molecular beam epitaxy.9 In the limit when the thickness
d of the thin film are much smaller than the lateral dimen-
sions of the device, it is natural to ask whether or not the
resulting 2D system is a 2D TI similar to the HgTe quantum
wells.1,2 In this Rapid Communication, we investigate this
question, and find a surprising result that the crossover from
the 3D to the 2D TI occurs in a oscillatory fashion as a
function of the layer thickness d.

Effective model analysis. We begin by recalling the four-
band effective model of the 3D TI introduced by Zhang et
al.5 with the following Hamiltonian:

H3D�k� = �
M�k� A1kz 0 A2k−

A1kz − M�k� A2k− 0

0 A2k+ M�k� − A1kz

A2k+ 0 − A1kz − M�k�
� + �0�k� ,

�1�

with k�=kx� iky, �0�k�=C+D1kz
2+D2k�

2 , and M�k�=M0
+B1kz

2+B2k�
2 . This Hamiltonian has been successfully

used to discuss the property of V-VI semiconductor,
such as Bi2Se3 and Bi2Te3.5 The four basis of
the above effective Hamiltonian are denoted as
�P1z

+ ,↑� , �P2z
− ,↑� , �P1z

+ ,↓� , �P2z
− ,↓� with the superscript �

standing for even and odd parity and ↑�↓ � for spin up
�down�. An important feature is that the two orbitals P1z

+ and

P2z
− have the opposite parities, so that the off-diagonal terms

are linear in kz and k�. Another important model is the four-
band effective model proposed by Bernevig, Hughes, and
Zhang �BHZ�1 for 2D quantum spin Hall �QSH� insulator,
given by the effective Hamiltonian,

H2D�k� =�
M̃�k� 0 0 Ãk−

0 − M̃�k� Ãk− 0

0 Ãk+ M̃�k� 0

Ãk+ 0 0 − M̃�k�
� + �̃0�k� ,

�2�

with �̃0�k�= C̃+ D̃2k�
2 and M̃�k�=M̃0+ B̃2k�

2 . The four basis
for the HgTe system are taken as �E1, 1

2 � , �H1,− 3
2 � , �E1,

− 1
2 � , �H1, 3

2 �. According to Ref. 1, the orbitals E1 and H1
also have the opposite parities, similar to the 3D TI model.
The finite size effect has been studied previously by B. Zhou
et al. within the BHZ model.10 Another similarity between
these two models is that in order to describe 2D or 3D TI, we

need the condition M0B1,2�0 or M̃0B̃2�0, so that the sys-
tem is in the inverted regime.1 In fact if we simply take kz
=0, the A1, B1 and D1 terms vanish and 3D TI model Eq. �1�
will reduce exactly to the BHZ model for the 2D TI Eq. �2�.
These similarities suggest that it is possible to give a unified
description of both the 2D and 3D TI, and it is helpful to
investigate the crossover between them when the dimension
is reduced by quantum confinement. Therefore, in the fol-
lowing, we would like to consider the 3D TI model Eq. �1� in
a quantum well or a thin film configuration. For simplicity,
here we assume the film or well thickness to be d and use an
infinite barrier to represent the vacuum.

To establish the connection between 2D BHZ model
and 3D TI model, we start from the special case of
A1=0 and turn on A1 later. For A1=0 the eigenvalue
problem of the infinite quantum well can be easily solved
at � point �kx=ky =0�. The eigenstate are simply given
by �En�Hn��=�2

d sin� n�z
d + n�

2 ����, with ���= �P1z
+ , ↑ �↓ �� for
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electron sub-bands and ���= �P2z
− , ↑ �↓ �� for hole sub-bands,

and the corresponding energy spectrum are Ee�n�=C+M0

+ �D1+B1�� n�
d �2 and Eh�n�=C−M0+ �D1−B1�� n�

d �2, respec-
tively. Here, we assume M0�0 and B1�0 so that the system
stays in the inverted regime.1 The energy spectrum is shown
in Fig. 1�a�. When the width d is small enough, electron
sub-bands En have higher energy than the hole sub-bands Hn
due to the quantum confinement effect. Because the bulk
band is inverted at � point �M0�0�, with increasing d the
energy of the electron sub-bands will decrease toward their
bulk value M0�0, while that of the hole sub-bands will
increase toward −M0�0. Thus, there must be crossing points
between the electron and hole sub-bands.

Now let us focus on the crossing points between the nth
electron sub-band �En� and the nth hole sub-band �Hn�, which
occurs at the critical thickness dc1 ,dc2 ,¯ in Fig. 1�a�. Near
one of these critical values of d, the low-energy physics can
be obtained by projecting the 3D TI model Eq. �1� into the
basis �En , ↑ �↓ �� and �Hn , ↑ �↓ ��. The resulting effective

Hamiltonian is nothing but BHZ model Eq. �2� with C̃=C

+D1�n� /d�2, M̃0=M0+B1�n� /d�2, Ã=A2, B̃2=B2 and D̃2
=D2. Following the argument of BHZ,1 we know that there
is a topological phase transition between QSH state and or-
dinary insulator across the critical point where the gap is
closed. The above result can also be obtained from the pari-
ties of the sub-bands �En� and �Hn� at � point. Since now, the
wave function has four components, the parity should be
determined by both the function sin� n�z

d + n�
2 � and the basis

���. Define P̂ as the inversion operator and we find that

P̂�En�= �−1�n+1�En� and P̂�Hn�= �−1�n�Hn�, hence �En� and
�Hn� always have the opposite parities. According to the par-
ity criterion of Fu and Kane,3 the topological property of the

system can be determined by the product of the parities of all
the occupied energy levels at all time-reversal invariant mo-
menta, which is denoted as 	. Near the critical thickness dcn,
the band gap is determined by �En� and �Hn� at � point and
all the other energy levels are far from the Fermi surface.
Therefore, due to their opposite parities, the crossing of �En�
and �Hn� will change the total parity 	 and correspondingly
the topological property of the system. The crossing points
can be determined by the condition Ee�n�=Eh�n�, which

leads to dcn=n�� B1

�M0� . A topological phase transition occurs
at dcn for each n, so that the system oscillates between QSH
phase and ordinary insulator phase with the period of lc

=�� B1

�M0� , if the Fermi energy always stays within the gap.
Next, we consider the effect of turning on A1 term. As

shown in Fig. 1�b�, A1 term induces the coupling between
�En�Hn�� and �Hn�1�En�1��, which results in an avoid cross-
ing between these sub-bands. However, a finite A1 does not
break parity, so that the crossing at dcn between �En� and �Hn�
with opposite parity remains robust. Since the topological
phase transition is mainly determined by the crossing be-
tween �En� and �Hn�, the system still oscillates between QSH
insulator and ordinary insulator when the thickness d is
tuned. Due to the hybridization induced by A1 term, two
special states �each doubly degenerate due to spin�, denoted
as �S1

+� and �S2
−� in Fig. 1�b�, are formed within the bulk gap

and well-separated in energy from other sub-bands when the
thickness d is large. �S1

+� is in fact the superposition of �E2n−1�
and �H2n��n=1,2 ,¯� while �S1

−� is the superposition of
�H2n−1� and �E2n��n=1,2 ,¯�. In large d limit, the gap be-
tween �S1

+� and �S2
−� goes to zero and the two states become

nearly degenerate. In Fig. 1�c�, the density �
�z��2 for �S1
+� or

�S2
−� is plotted as a function of the position z for a quantum

well with the width d=20 nm, which indicates that �S1
+� and

�S2
−� are localized on the two surfaces of the thin film. One

should recall that the bulk material is a 3D TI with surface
states on each surface,5 so that in the large d limit �S1

+� and
�S2

−� are nothing but the bonding and the antibonding state of
the two surface states at the two opposite surfaces. Since �S1

+�
and �S2

−� have opposite parities, the topological phase transi-
tion can also be understood as the change of sequence be-
tween these two states. On top of the exponential decay, the
wave function shown in Fig. 1�c� also oscillates with a pe-

riod ��� B1

�M0� , which coincides with the oscillation period of
the system between QSH insulator and ordinary insulator.
Although A1 term cannot eliminate the crossing between �En�
and �Hn�, it can shift the critical thickness dcn. The depen-
dence for the critical thickness on the parameter A1 is shown
in Fig. 1�d�, with the QSH regime labeled by the shading
regions. One can see that when A1 is increased, all dcn �n
=1,2 ,¯� are shifted to the large values, but the oscillation
length does not change too much.

Realistic materials. The above discussion based on the
analytical model gives us a clear physical picture of the
crossover between 2D BHZ model and 3D TI model, and in
the following, we would like to consider about the possible
realization in the realistic TI materials Bi2Se3 and Bi2Te3.
Here, we carried out the first-principles calculations with the
BSTATE package11 and Vienna ab initio simulation package
�VASP�.12 The generalized gradient approximation of

FIG. 1. �Color online� The energy level versus the thickness of
the quantum well is shown for �a� A1=0 eV·Å, �b� A1

=1.1 eV·Å. Other parameters are taken from Ref. 5. The shaded
region indicates the regime for QSH states. The blue dashed line in
�b� shows how the crossing between �E1�H1�� and �H2�E2�� is
changed to anticrossing when A1 is nonzero. In �c�, the density of
�S1

+� ��S2
−� has the same density� is plotted for A1=1.1 eV·Å. In �d�,

the critical thickness dcn�n=1,2 ,¯� is plotted as a function of A1.
QSH states appear in the shaded region.
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Perdew-Burke-Ernzerhof �PBE�-type is used for exchange-
correlation potential and the spin orbit coupling is taken into
account. For 2D thin film, we construct the free-standing slab
model with crystal parameters taken from the experimental
data. For Bi2Se3 and Bi2Te3, five-atom layers, including two
Bi layers and three Se or Te layers, are stacked along z di-
rection, forming a QL.5 There exists strong coupling between
two atomic layers within one QL but much weaker coupling,
predominantly of the van der Waals type, between two QLs.
Therefore, it is natural to regard a QL as a unit for the thin
film. We will first neglect the lattice relaxation effect, which
depends on the detail of the lattice environment and address
this problem in the end. As we have discussed above, the
topological property can be determined by the total parity 	,
which has been successfully utilized to predict the 3D TI,
such as BixSb1−x �Ref. 3� and Bi2Se3.5,6 Here, we apply this
method to the thin film with four time-reversal invariant

points in 2D Brillouin zone �BZ�, namely, �̄�0,0�, M̄1�� ,0�,
M̄2�0,��, and F̄�� ,��, as shown in the inset of Fig. 3�a�.
The parity of the wave function at these points is well-
defined and can be easily calculated to determine the topo-
logical property.

The calculated band gap at � point and the related total
parity 	 for different QLs are shown in the table of Fig. 2�c�.
The first nontrivial QSH phase appears at 3QLs for Bi2Se3
and at 2QLs for Bi2Te3. The gap at � point of the nontrivial
QSH phase for 2QLs Bi2Te3 is quite large, of about 148
meV, however as shown in Fig. 3�a�, the Bi2Te3 is an indirect
gap material, and the indirect gap is an order smaller, only
�10 meV, similar to the gap of 4QLs Bi2Se3. When the
thickness of the film increases, the time cost for the ab initio
calculation also increases rapidly, therefore, we perform the
tight-binding �TB� model calculation based on the maximally
localized Wannier function �MLWF�13,14 from the ab initio
calculation, which has also been successfully applied to cal-

culate the surface states of Bi2Se3 type of materials.5 The
band gap and the total parity 	 obtained from the TB calcu-
lation are summarized in Fig. 2�a� for Bi2Se3 and Fig. 2�b�
for Bi2Te3. The results for the 1�5 QLs fit with ab initio
calculation, which confirms the validity of our method. From
Figs. 2�a� and 2�b�, it is clear that the system oscillates be-
tween QSH insulator and ordinary insulator, which verifies
our previous analysis of oscillating crossover.

When the 2D system stays in the QSH phase, there are
topologically protected helical edge states at the 1D
edge.15–17 To show the topological feature more explicitly,
we calculate the dispersion spectra of the helical edge states
directly. As examples, here we study the edge states of the
2QLs Bi2Te3 and 3QLs Bi2Se3 film along A1 direction, as
shown in the inset of Fig. 3�c�. For a semi-infinite system,
combining the TB model from MLWF with the iterative
method, we can calculate the Green’s function17 for the edge
states directly. The local density of states is directly related
to the imaginary part of Green’s function, from which we can
obtain the dispersion of the edge states. The topological na-
ture of the edge states can be determined by the method
suggested by Fu and Kane.3 As shown in Fig. 3�b� for 2QLs
Bi2Te3, there exist one edge state �1, which stays in the

valence band at �̄ point and goes to conduction band at M̄
point. Such edge states are in fact the helical edge states
which cannot be eliminated by the local time-reversal invari-
ant perturbation. For 3QLs Bi2Se3 in Fig. 3�d�, there are
three edge states �1,2,3 connecting the conduction and va-
lence band, which guarantee the system to be nontrivial.
There are also other trivial edge states ��2,3 and �4� only
connected to the conduction band or valence band, which do
not change the topological property of the system.

In the discussion above, we have only considered the bulk
parameters and have neglected the influence of the surface

(c) Bi2Se3 Bi2Te3

Gap at Γ (eV) Parity ν Gap at Γ (eV) Parity ν
1QL 0.710 + 0.391 +

2QLs 0.098 + 0.148 -

3QLs 0.004 - 0.036 +

4QLs 0.012 - 0.005 -

5QLs 0.004 -

(a) (b)

FIG. 2. �Color online� The band gap and the total parity are
plotted as the function of the number of the QLs for �a� Bi2Se3 and
�b� Bi2Te3. The calculation is based on TB model constructed by
MLWF from first-principles calculation. The results from the fully
first-principles calculation are shown in table �c� for 1�5 QLs.
Good agreement between the TB model calculation and first-
principles calculation is found.
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FIG. 3. �Color online� Left: the energy dispersion of 2D thin
film is plotted for �a� 2QLs Bi2Te3 and �c� 3QLs Bi2Se3. Right: the
energy dispersion of the semi-infinite film with the edge along A1
direction is plotted for �b� 2QLs Bi2Te3 and �d� 3QLs Bi2Se3. The
inset of �a� shows the 2D BZ and that of �c� is the top view of 2D
thin film with two in-plane lattice vectors A1 and A2. The 1D edge
is indicated by the blue line along A1 direction. The insets of �b�
and �d� are the zoom-in of the energy dispersion near the bulk gap.
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lattice relaxation. Since for 2D thin film, the lattice relax-
ation always plays an important role in the electronic band
structure, we would like to address this problem in the fol-
lowing. The largest nontrivial gap appears for 2QLs Bi2Te3
and 4QLs Bi2Se3, which is suitable for experiment to ob-
serve. If the thin film is relaxed in vacuum environment, the
nontrivial QSH phase could be changed to ordinary insulator
phase, due to the change of the distance between two QLs.
The reason is that the van der Waals interaction between two
QLs is very week and quite sensitive to the lattice environ-
ment. This also indicates that the lattice relaxation should
depend strongly on the pressure and the substrate. Therefore,
here we propose two different ways to overcome the nega-
tive influence from surface lattice relaxation. One simple
way is to apply uniaxial compressive stress �along the
growth direction� to the film. Based on first-principles calcu-
lation, it is found that only 0.1 GPa stress can recover the
nontrivial gap, which can be easily achieved in experiment.18

Another way is to fabricate the sample on the proper sub-
strate. For the material with the positive Poisson ratio, when
the lattice is stretched within the film plane, it tends to get
thinner in the perpendicular direction. Therefore, we can use
the materials with the larger in-plane lattice constant than
that of Bi2Se3 or Bi2Te3 as the substrate. Since in the present
paper, we focus on the principle of realizing QSH insulator
from 3D TI, further study about the effect of pressure and
substrate will be addressed elsewhere.

Conclusion. We have studied the crossover between 3D
and 2D TI in Bi2Se3 and Bi2Te3 systems. Based on both
effective model analysis and ab initio calculation, we found
that it is possible to obtain 2D QSH state by confining 3D TI
in a quantum well or thin film configuration with the proper
thickness. Up to now, 2D QSH effect has only been observed
in HgTe quantum wells,2 and our work may open up a new
way to search for new materials with 2D QSH effect. Re-
cently, the high-quality samples of Bi2Se3

19 and Bi2Te3
9

thin films have already been fabricated in experiment, so that
it is likely to observe the proposed phenomenon soon. Re-
cently, we learned about the work of H. Z. Lu et al.20 and J.
Linder et al.,21 in which similar finite size effect has been
studied within the 3D TI model of Zhang et al.5
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